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 1  Introduction 

The quTAG software can be installed on Windows 7, 8, 8.1, and 10, 32- and 64 Bit. The Linux 

version requires a x86-64 Bit distribution with libc 2.19 or newer. 

On Windows, using the 

installer  

Daisy@QUTAG-Vx.y.z.exe 

Start the installer program and follow the instructions. Drivers 

and necessary libraries will be installed automatically. 

On Windows, using the 

zip archive 

QUTAG_Vx.y.z.zip 

Extract the zip archive to a directory of your choice. 

Install the device driver in the usbdriver directory using 

dpinst32.exe or dpinst64.exe, whatever conforms to your 

Windows version. 

On Linux, using the 

 tgz archive 

QUTAG_Vx.y.z.tgz 

Extract the archive to a directory of your choice. 

Follow the instructions in install/readme.linux.txt. 

 

The following software will now reside in the installation directory.  

daisy(.exe) "Data Analysis and Imaging System" – the main control software 

for the quTAG.  

nhflash(.exe) The firmware update tool.  

tarec(.exe) A record & merge tool for synchronized devices.  

tdccli(.exe) A command line tool for simple tasks.  

userlib The directory contains the custom programming library, with 

HTML documentation and LabView wrapper Vis. 

usbdriver USB driver packet for Windows 32 and 64 Bit. 

firmware Firmware for the device. 

 

See the quTAG manual for more information.  

When using the Windows installer, also start menu entries for the programs are created. 
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 2  Code examples 

 2.1  How to handle the quTAG DLL - Example by the Python wrapper  

This chapter explains the handling of the DLL by the python wrapper and help the 

understanding how the initialization and communication with the quTAG works in general.  

What you need to start: 

• The wrapper works with python 3.x. 

• If you work with python 32 Bit, target the 32 Bit DLL tdcbase.dll – downloaded with 

the standard quTAG software in the Downloads tab at 

https://www.qutools.com/qutag/  

• If you work with python 64 Bit, target the 64 Bit DLL tdcbase.dll – the library can be 

downloaded as a ZIP file in the Downloads tab under Software -> 64bit library. 

 

If you want a quick start, skip this chapter and get right in the first example. 

 

The python examples are based on the python wrapper QuTAG.py, which loads the quTAG DLL 

tdcbase.dll and wraps all functions for python and initializes some parameters 

automatically. 

The wrapper first imports ctypes to handle the DLL and os to change the working directory 

automatically, see below. 

13. import ctypes   
14. import os  

The wrapper QuTAG.py and all your individual codes should be located in the software path 

"\QUTAG-Vx.x.x\userlib\src\" to use the tdcbase.dll in "\QUTAG-Vx.x.x\userlib\lib\". If you 

want to change to individual directories edit the DLL search path within QuTAG.py wrapper in 

the initialization. 

22. class QuTAG:   

41.     def __init__(self): 

50.         self.qutools_dll = ctypes.windll.LoadLibrary(dll_name)   

before LoadLibrary, the working directory is changed to the wrapper path. 
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Then the API of the DLL is declared. Here all functions of the DLL are defined and wrapped to 

use with python by ctypes. You can look up the functions in the documentation in "\QUTAG-

Vx.x.x\userlib\documentation.html". 

156.         self.qutools_dll.TDC_deInit.argtypes = None   
157.         self.qutools_dll.TDC_deInit.restype = ctypes.c_int32   

 

And some dictionaries for parameters and errors are implemented.  

After that, the actual quTAG device is initialized within the wrapper.         

58.         self.Initialize()   

 

 

372. # Init --------------------------------------------------------------       
373.     def Initialize(self):    
374.         ans = self.qutools_dll.TDC_init(self.dev_nr)   

The wrapped DLL function TDC_init is called. See also the documentation in "\QUTAG-

Vx.x.x\userlib\documentation.html" for this and the following DLL comments. 

The function TDC_init from the DLL and wrapped in the APT declaration disconnects from any 

connected devices, initializes internal data and starts an event loop for data acquisition. It 

discovers devices connected to the computer, and connects to the first device that matches the 

given device ID. In the __init__(self) function of the wrapper (line 41), a device ID -1 is defined 

before the function Initialize is called. The device ID is an identification number programmed 

by the user. The special value -1 matches all devices. 

56.     self.dev_nr=-1   

 

The function TDC_init should be called before any other TDC functions. Alternatively, 

TDC_discover and TDC_connect can be used to handle multiple devices from one program.  

If no device is found, a demo mode is started. So, you can test your code without hardware. The 

wrapper will tell you by printing "No suitable device found - demo mode activated" in the 

python shell. But if a device is connected, you probably should reconnect the USB connection or 

restart the device.  
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 2.2  Get event and coincidence rates - Example Python / DLL functions 

In the first example qutag-GetCoincCounter-starter_example.py we are retrieving event 

rates and coincidences of the quTAG and its input channels. 

At first - in every example - the wrapper is imported.  

20. try:   
21.         import QuTAG   
22. except:   
23.         print("Time Tagger wrapper QuTAG.py is not in the search path.")   

 

If you get the error message, please read chapter  2.1  where your files should be located in 

respect to the wrapper and the DLL. 

After that we initialize the quTAG with the following line. 

26. # Initialize the quTAG device   
27. qutag = QuTAG.QuTAG()   

For more info about what's happening in the initialization, see chapter  2.1 . 

Then we are setting the exposure time in milliseconds for how long the quTAG should look on 

the channel and count the events and calculates the coincidences between channels. 

29. # Set the exposure time (or integration time) of the internal coincidence counters in m
illiseconds, range = 0...65535   

30. qutag.setExposureTime(100) # 100 ms exposure time 

The wrapped DLL function TDC_setExposureTime is called. See also the documentation in 

"\QUTAG-Vx.x.x\userlib\documentation.html" for this and the following DLL comments. 

After that we give the quTAG some time to accumulate the data with time.sleep(1). Therefore, 

in the first lines of the sample code, we imported import time. 

Now let's retrieve the most recent values of the built-in coincidence counters from quTAG. 

39. data,updates = qutag.getCoincCounters()   

The wrapped DLL function TDC_getCoincCounters is called. 

data is a 1D numpy array with 31 entries of int32. The array contains count rates for all 5 

channels and rates for coincidences of events detected on different channels.  

Events are coincident if they happen within the coincidence window. This window can be 

changed by the function qutag.setCoincidenceWindow(int32). The parameter for the coincidence 

window is in bins in a range = 0 ... 2000000000 with the bin width of the device (1 ps). 

The coincidence counters are not accumulated, i.e. the counter values for the last exposure (see 

setExposureTime above) are returned.  

The Counters in the array come in the following channel order with single counts and 

coincidences:  

0(5), 1, 2, 3, 4, 1/2, 1/3, 2/3, 1/4, 2/4, 3/4, 1/5, 2/5, 3/5, 4/5, 1/2/3, 1/2/4, 1/3/4, 2/3/4,  

1/2/5, 1/3/5, 2/3/5, 1/4/5, 2/4/5, 3/4/5, 1/2/3/4, 1/2/3/5, 1/2/4/5, 1/3/4/5, 2/3/4/5,  

1/2/3/4/5 

http://www.qutools.com/
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Where e.g. 1/3 is the 7. entry in the array ( -> data(6) ) for coincidences between channel 1 and 

3. 

 

The variable updates is the number of data updates by the device since the last call. If you call 

that function in a loop more often, the counter updates will show you if new data is there. See 

the example qutag-GetCoincCounter-LivePlotting-example.py in action. 

At last, we print the data and deinitialize the device with 

47. # Disconnects a connected device and stops the internal event loop.   
48. qutag.deInitialize()   
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 2.3  Get timestamps and check data loss - Example Python / DLL functions 

 
The example qutag-GetTimestamps-starter_example.py shows how to retrieve 
timestamps and be sure, that none are lost. 
 
Let's check if the device lost some data. Timestamps of events detected by the device can get 
lost if their rate is too high for the USB interface or if the PC is unable to receive the data in 
time.  The quTAG recognizes this situation and signals it to the PC (with high priority). The 
function checks if a data loss situation is currently detected or if it has been latched since the 
last call. If you are only interested in the current situation, call the function twice; the first call 
will delete the latch. 
 
37. dataloss = qutag.getDataLost()   
38. print("dataloss:" + str(dataloss))   

 
 
The next function retrieves the timestamp values of the last n detected events on all channels. 
All timestamps are from a ring buffer with a variable buffer size. 

• The default of the buffer size at the initialization of the python wrapper is 1000000. 

• In any other usage of the DLL, use the DLL function TDC_setTimestampBufferSize 
(default 0 -> 0 data will be returned). 

• The bool variable describes if the buffer should be cleared after retrieving the data 
(True). 

 
48. timestamps = qutag.getLastTimestamps(True)   
49. print("Timestamps in an array:")   
50. print(timestamps)   

 
 
 
The variable timestamps show our data in an array of: 

• an array with all timestamps of the last events in base units 1 ps 

• an array with the corresponding channels, range is 0...7 for the channels 1...8 

• a variable which shows the number of the valid entries in the above arrays. 
This may be less than the buffer size if the buffer has been cleared. 
!!! If it is the same as the buffer size, the ring buffer is full. 
Probably, the ring buffer was overwritten by new data which was not retrieved yet. 

 

At last, we deinitialize the device with 

60. # Disconnects a connected device and stops the internal event loop.   
61. qutag.deInitialize()   
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 2.4  Write timestamps to file - Example Python / DLL functions 

 
The example qutag-WriteTimestamps-starter_example.py shows how to write 

timestamps from the quTAG to a file. 

First, we import the quTAG wrapper and initialize the device – like in every example. 

20. try:   
21.      import QuTAG   
22. except:   
23.      print("Time Tagger wrapper QuTAG.py is not in the search path.")   

 

26. # Initialize the quTAG device   
27. qutag = QuTAG.QuTAG()   

After that, we create a variable filename  for the name of our output text file. 
 
Then we start writing to the file: 
 
43. # start writing Timestamps from the quTAG 
44. qutag.writeTimestamps(filename,qutag.FILEFORMAT_ASCII)   

 
The timestamps come in the base units of 1 ps. All timestamps written are already corrected by 
the detector delays, see example qutag-GetHistogramLoop-channelDelay-example.py. 
 
The channel numbers start with 0 in binary formats, with 1 in ASCII. 
A channel number of 100 and higher is associated with the marker input events. 
The channel number 104 is a millisecond tick. 
 
The following file formats are available: 

• ASCII: FILEFORMAT_ASCII - Timestamp values (int base units) and channel numbers as 
decimal values in two comma separated columns. Channel numbers range from 1 to 8 
in this format. 

• binary: FILEFORMAT_BINARY - A binary header of 40 bytes, records of 10 bytes, 8 bytes 
for the timestamp, 2 for the channel number, stored in little endian (Intel) byte order. 

• compressed: FILEFORMAT_COMPRESSED - A binary header of 40 bytes, records of 40 bits 
(5 bytes), 37 bits for the timestamp, 3 for the channel number, stored in little endian 
(Intel) byte order. No marker events and timer ticks are stored. 

• raw: FILEFORMAT_RAW - Like binary, but without header. Provided for backward 
compatibility. 

 
After a short sleep we stop writing the timestamps. 
 
52. # stop writing Timestamps   
53. qutag.writeTimestamps('',qutag.FILEFORMAT_NONE)  

At last, we print the data and deinitialize the device. 
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 2.5  Create and get histograms - Example Python / DLL functions 

The next example qutag-GetHistogram-starter_example.py shows how to retrieve 

histograms of the quTAG. 

Here we are going to plot the histograms with matplotlib. 

First, we import the quTAG wrapper and initialize the device – like in every example. 

24. try:   
25.         import QuTAG   
26. except:   
27.         print("Time Tagger wrapper QuTAG.py is not in the search path.")   

 

28. # Initialize the quTAG device   
29. qutag = QuTAG.QuTAG()   

After that, we create variables for the input channels we want to create the histogram of. 

35. # Choose our start and stop channel   
36. ch_start = 2   
37. ch_stop = 3   

Now we tell the software to add the desired histogram. In the parameters we name the start 

channel ch_start, the stop channel ch_stop and if the histogram should be added True or 

removed False. 

43. qutag.addHistogram(ch_start,ch_stop,True)  

After that we give the quTAG some time to accumulate the data with time.sleep(1). Therefore, 

in the first lines of the sample code, we imported import time. 

Now let's get the histogram data. 

50. ### Get the histogram of channel ch_start & ch_stop and clear the data with True   
51. rc = qutag.getHistogram(ch_start,ch_stop,True)   

The function getHistogram has three parameters with the start channel ch_start, the stop 

channel ch_stop and a boolean variable if we want to clear the histogram data after retrieving 

it. 

The function returns an array with 7 elements. The first element rc[0] is also an array with our 

histogram data with at least binCount elements. 

The second variable r[1]  is an integer with the total number of time differences in the 

histogram. 

r[2] and r[3] are integers which show the number of time diffs that were smaller than the 

smallest histogram bin and number of time diffs that were bigger than the biggest histogram 

bin. 

r[4] and r[5] are integers which show the number of events on the start channel contributing 

to the histogram and number of events on the stop channel contributing to the histogram. 

The last variable r[6] shows the total exposure time for the histogram: the time difference 

between the first and the last event that contribute to the histogram in units of the quTAG 

time base 1 ps. 

http://www.qutools.com/
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 In the rest of the example we simply plot the data of the histogram rc[0] with matplotlib and 

deinitialize the device with 

75. # Disconnects a connected device and stops the internal event loop.   
76. qutag.deInitialize()   

 

The example qutag-GetHistogramLoop-channelDelay-example.py shows how to retrieve 

histograms in a loop. We also set a delay on one channel every loop, so the histogram is moving 

in the plot. 
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 3  Command Line Interface 

The command line interface can be used for some simple tasks as a one-time readout of the 
count rates, writing time stamps to a file or saving histogram data. To use it, open a command 
prompt, go to the software directory and call tdccli(.exe). Use the parameter  -h for additional 
information. 

The CLI program also serves as an example DLL application. The source code is available in 
userlib\cli. 
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 4  FAQ 

 4.1  USB Driver Version 

Problem Windows only: 

The software doesn't find any device. 

The software claims "Wrong version of USB Driver installed". 

Cause The quTAG is using an USB chip of FTDI. The Software works with FTDI's driver 

version 1.2. In the meantime, FTDI published version 1.3 which breaks the 

Software (we are convinced that the version is buggy but were not able to 

settle that with FTDI). 

The quTAG software installer is installing 1.2, but Windows sometimes 

updates to 1.3 autonomously. We don't know when and why that happens 

but it has sometimes been observed directly after installing the quTAG 

Software. This applies to Windows 7, 8, and 10.  

Solution The driver version 1.3 has to be removed and replaced by 1.2.  

To remove, open the device manager, click the device ("FTDI Bridge Device" or 

"quTAG R3") and disable the driver. Select the option "remove driver from PC" 

(or similar). Sometimes Windows offers an option "return to old driver version" 

(or similar) - that also works.  

Then install again the Software package, the previous installation hasn't to be 

removed. 
 

 4.2  Firmware Version 

Problem The Daisy software warns that the firmware version doesn't match the 

software version. 

Cause In many cases new software packages come along with new firmware files. 

The software can work correctly only if the matching firmware is installed. 

Solution Call the flasher tool "nhflash(.exe)" of the new software package and press 

"Flash" to update the firmware. 

 4.3  Unexpected Delays 

Problem The time differences between events happening on different input channels 

are systematically wrong by some nanoseconds. 

Cause quTAGs input signals have slightly different internal runtimes. The "signal 

delay" function is used to compensate that as well as external runtime 

differences. On delivery, the delays are not calibrated. 

Solution To remove the runtime difference between two channels, connect them with 

input signals of known pulse distance and adjust the signal runtime until the 

quTAG reproduces the known value. 

http://www.qutools.com/
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 4.4  Low Resolution with Jitter Upgrade 

Problem A quTAG with "Jitter Upgrade" has very low time resolution. 

Daisy warns about uncalibrated channels. 

Cause The Jitter upgrade requires a calibration procedure that should be repeated 

from time to time. A quTAG that has never been calibrated exhibits an 

extremely low time resolution of about 5ns. On delivery, the devices are 

uncalibrated. 

Solution Perform the calibration procedure according to the handbook for every input 

channel. 
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Revision Date Changes 

1.5.0 2019-10-07 Two examples added:  

qutag-WriteTimestamps-starter_example.py & 

qutag-GetTimestamps-starter_example.py 

1.5.0 2019-09-27 Description of the Python wrapper 
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